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NONUNIQUENESS IN g-FUNCTIONS 
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ABSTRACT 

We give an example  of  two dist inct  s ta t ionary  processes {X,~) and  

{X~} on {0,1} for which P[Xo = 1 [ X-1  = a - l , X - 2  = a-2, . . .]  = 

P[X~ ---- 1 I X~I  -- a - l , X ~ 2  -- a - 2  . . . .  ] for all {al}, i = - I , - 2 , . . . ,  

even though  these  probabili t ies are bounded  away f rom 0 and  I, and  are 

continuous in {al}. 

I .  In t roduc t ion  

One way of constructing a stationary process is to proceed inductively. Ass-m;ng 

that the entire past of the process has already been chosen, one can, according to 

some probability law, choose the present. Repeating this procedure indefinitely, 

one defines the process for all time. Markov chains provide motivation for this 

construction. Corresponding to the transition matrix of a Markov chain, one 

can employ g-functions for stationary processes. Here, we consider whether a 

g-function uniquely determines the stationary process under a natural "mixing" 

assumption. 
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Let {X,}, n E Z, be a stationary process; for simplicity, assume that Xn G 

{0,1}. Using basic facts from martingales, one can define the conditional expec- 

tation f given the complete past 

f ( a - l , a - 2 , . . . )  = e [ x o  -- 1 l X-1 = a - l , X - 2  = a - 2 , . . . ]  
(1) 

= P [ X ,  = 1 I X , _ ,  = a - l ,  X , _ ~  = a - 2 , . . . ] ,  

where a+ E {0,1}, i = -1 ,  - 2 , . . . ,  and of course 0 _< f _< 1. On the other hand, 

one can also start from functions f defined on sequences of O's and l 's,  and from 

them attempt to recover such stationary processes. Suppose that 

(A) 0 _< f _< 1 for all sequences a - l , a - 2 ,  . . . .  

(B) f is continuous, i.e., Ve > O, 3m E Z + so that 

If(oe 1) - f(oc2)l < e 

for a t = (a~1, at__2,...), s = I, 2, with a~ = a~ for i > -m. 

(C) 3e G (0, ~) so that 

< _ / ( a - l ,  a - 2 , . . . )  _< 1 - 

for all a - l , a - 2 ,  . . . .  

Under Assumption (A), f is said to be a g-funct ion;  under (A) and (B), a 

con t i nuous  g-funct ion.  If f is a continuous g-function, then it is standard 

(and easy to show) that there exists a stationary process {X,) so that (I) holds. 

If (C) holds as well, we say f is a regular g-function. Does such a g-function 

necessarily correspond to a unique stationary measure? The purpose of this paper 

is to exhibit a regular g-function for which uniqueness does not hold. 

g-functions were introduced by Doeblin and Fortet [3]. Harris [4] used g- 

functions to study the behavior of lumped state Markov chains. Keane [7] intro- 

duced the notion of continuous g-functions; he also gave conditions under which 

g-functions have unique measures which are mixing. Berbee [2] developed more 

general uniqueness criteria. Petit [8] extended Keane's work, with "continuous" 

being replaced by "differentiable"; he showed that all differentiable g-functions 

satisfying (C) have unique measures which are weak Bernoulli. 

Kalikow [5] showed that a stationary, stochastic process can be represented as 

a random Markov chain precisely when it is a uniform martingale. The latter 

term means that the corresponding g-function is continuous; the former, that one 

can look a finite random distance into the past, and, using that portion of the 
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past, apply a probability law to choose the present. The example of nonunique- 

hess which we present here will be a random Markov chain. (The question about 

nonuniqueness was first posed in [5].) We will not use this characterization, but 

note that following the proof of Theorem 7 in [5], it is easy to show that if 

the random distance one looks back has finite expectation for a random Markov 

chain also satisfying (C), then the corresponding g-function in fact uniquely de- 

termines the measure. (B. Weiss has since raised the question as to how much 

the assumption of finite expectation can be relaxed while preserving uniqueness.) 

In [5], Kalikow also exhibited a uniform martingale which is K but not 

Bernoulli. Kalikow, Katznelson, and Weiss [6] have shown that every zero entropy 

transformation can be extended to a uniform martingale. We also note that the 

equilibrium measures of appropriately chosen one dimensional long-range Ising 

models are known not to be unique (see Aizenman, Chayes, Chayes, and New- 

man [1]). For these models, the spin at zero is influenced by sites arbitrarily far 

to the left and to the right. 

2. Construction of  the example 

Let {pj}, j E Z +, be any decreasing sequence of numbers which satisfy pj ~_ 0, 

E~=I PJ = I, and 

1 E p i  for all k. (2) pk _< 
j>k 

�9 1 (1 , ' ) / , ' .  Let (in/}, For example, one can let pj = crJ, with r E ( i , )  and c = - 

j E 7.+, be an increasing sequence of odd positive integers. We introduce the 

random variable N having distribution given by 

(3) P[N = mj] = pj for all j .  

From N, we define the random variable W on sequences a = (a-l,a-2,...) of 

O's and l 's by 

- - 1 - e  
(4) W(a) 

if the majority of ( a - i , . . . ,  a-N} are l's, 

otherwise, 

where ~ E (0, ]) .  
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Using W, we can construct the g-function 

(5) f(c~) = E[W(ot)]. 

f prescribes looking back the random distance N into the past, and with proba- 

bility 1 - e adopting the state of the majority. It is easy to check that f satisfies 

properties (B) and (C), and so is regular. We will show that f is nevertheless 

the g-function of two distinct stationary processes, provided that {m j )  increases 

rapidly enough. 

We start by fixing the past to be X 1 = 1 and X ~ -- 0, for n = - 1 , - 2 , . . . ,  for 

the processes X 1 = {X 1} and X ~ -- {X~ and extending the construction for all 

n inductively according to (1). Of course, neither X 1 nor X ~ is stationary. We can 

nonetheless use the monotonicity of f to construct stationary limits. Specifically, 

let Xt, ,i = Xt,+i for i G Z + and s = 0,1. Since {X 1'i} is stochastically decreasing 

as i --* co, it converges weakly to some stationary limit X +. Similarly, {X ~ 

converges to some stationary limit X - .  One can check that both X + and X -  

have g-function f .  

We will show that 

(6) l imooPiX.  = 11 > �89 

provided {mi} increases rapidly. Similarly, l i m , _ . ~ P [ X  ~ = 11 < ~. Since 

P[X~ = 1] and P [ X  ~ = 1] are given by these limits, it will then follow that X + 

and X -  are distinct. The regular g-function f defined in (5) therefore corresponds 

to distinct stationary processes. 

3.  U s e f u l  a u x i l i a r y  processes  

The remainder of the paper is devoted to demonstrating (6). Here, we construct 

processes yk , a  and Z ~,a, which we later compare with X. 

Let {pj}, {mj}, N, W, and a = ( a - l , a - 2 , . . . )  be as before. For k E Z +, 

introduce 

(7) 
W k ( a ) =  W(tr) if N E { m l , . . . , m k - a } ,  

= 1/2 otherwise, 

fk(~)  = E[Wk(a)] .  
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Define yk,a  by fixing the past to be yk ,a  = a .  for n -- - 1 , - 2 ,  and using 
- n  " ' "  

the analog of (1) for fk to extend y_~,a for nonnegative n. Similarly, set 

= W ( a )  if N e {ml , . . . ,mk-1},  
l~k(a) = e if N = ink, 

(8) = 1 - e if N E {mk+l,mk+2,...}, 

= 

Define Z k,a analogously, but by instead using ]~. Note that fk and ]k only 

look back a finite distance into the past, and do not depend on the choice of 

ink, ink+l, . . .  (although ]~ depends on Pk). 

We first wish to compare yk,a  and Z k'a, for given k and a. On account of (2), 

/%)- s%)= (�89 
( 9 )  i > k  

> (�89 _ , )  > 0 .  

Owing to the monotonicity of fk, it is not hard to couple Yk'a and Z k,a so that 

Yn k,a < Z k,a for all n. Using (9) again, we obtain that w n 

(10) E[Z~, '~] - E l Y ,  k'a] >_ TIk for all n _> 0. 

Both fk and ]k depend only on the first rnk-1 coordinates a - l , . . . ,  

a-mh_l. So both yk,a  and Z k'a are rnk-l-step Markov chains on {0, 1}. Equiv- 

alently, yk,a  and Z k'a can be interpreted in terms of Markov chains on a 2 m*-l- 

point state space. Let Yk,a[0, m) and Zk,a[0, m) denote the number of l 's for 

either process in the interval [0, m). Then by the ergodic theorem for Markov 

chains and the symmetry of fk, 

(11) lira -~Y/c,a[0,rn)-- ~ a.s. 
m - . ~ 0 0  

for fixed a. Again invoking the ergodic theorem, this time in conjunction with 

(10), (11), and bounded convergence, one obtains 

(12) lim ~ z~,,,~ro m) > m--.~ ~'-- L , _ ~ -I- T/k a.s. 

Consequently, for given Sk > 0 and large enough m, 

(13) P[~Z~,"[0,m) _< (1 + ~k)/2] < ~ .  

Since Z k'~ has finite memory, (13) in fact holds uniformly in a. 
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4. Comparison between X' and Zk,~; derivation of  (6) 

So far, we have not stated anything about the sequence {mj} used to construct 

X 1 ' yk , a  and Z t 'a, other than indicate that we want it to increase rapidly. We 

now define {mj} recursively as follows. Suppose that mj  has been given for 

] < k. Setting 6t = 3-k-it /k,  we choose mt  large enough so that (13) holds for 

m > ink. (Recall that Z ~,a does not depend on mj,  j > k.) One obtains 

(14) [ i Zk,~fO +,/k)/2] _< P[~-~; L ,m~) <_ (I 3-k-'t/k 

for all k and a. Typically, {mj} will be increasing rapidly. We nevertheless 

explicitly assume as well that 

(15) m j / m j + l  < ~j/2 for all j .  

We will demonstrate (6) by means of the following induction hypothesis. As 

before, X1[ ,1 , , 2 )  will denote the number of 1% in the interval [nl,n2). We set 

(16) Ej , .  = {w: 1---Xi[nm~ - mj,  n) <_ (1 + t/j)/2}, j >_ 1,n 6 Z. 

INDUCTION HYPOTHESIS. For all j and a l l .  < n0, 

(17) P[E~,.] < 3-J,Tj. 

Assume now that (17) holds for all n. One can easily check that 

(18) 
. - 1  

m--7 P[X:, = 11 > (1+  j13) > 112. 
ns~n--n*$j 

As mentioned earlier, P[X 1, -- 1] is decreasing in . ' .  So selecting any j in (18) 

and letting n -'* co, one obtains (6). 

We first note that (17) holds trivially for no = O, since X .  1, = 1 for n' < O. 

Assume now that (17) holds f o r .  _< -0 and all i. It sufilces to show (17) for 

n = n0 + 1 and all j .  Setting j -- k, k arbitrary, we will demonstrate (17) for 

n = nx + ink, whenever nl < n0. This will complete the proof. 

For convenience, set F L .  = E~,.+m, and Gk,. = U Ej , . .  One of course has 

c u (Fk,. n C?,,.). 
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By the induction hypothesis, 

(19) P[Gk,nt] _< ~ 3-iY/j _< 2.3-k-IT/k, 
j>k 

since T/~ is decreasing. We will demonstrate 

(20) n < 

Together with (19), (20) implies that P[Fk,,I] ~ 3-kr/k, which is the bound we 

want. To obtain (20), we will compare X 1 with the processes Z k,~. First note 

that under G c N {N m > rnk), X~ = I for most of the sites n E [nl - N , , ,  nl) ,  
k , n l  

where N,~, is the random distance one looks back at the site nl.  The key point 

is that under G c f3 {Nnt+t > rak}, g = 0, 1, , rnk 1, X~ = 1 also holds for 
k , n  I �9 �9 . - -  

most of the sites n E [nl + ~ - Nnt+e, nl + s One is therefore able to compare 

f with fk  as in (23), and obtain (26) from (14). 

Let t~ = {ai}, i E Z, denote a doubly infinite sequence of O's and l 's, and 

r(t~) = {ai}, i < 0, the corresponding restriction to the negative half-line. Denote 

by Hk the set of a = {ai}, i < 0, satisfying 

1 -1 
(21) i > k .  

i------m i 

On account of (15), it follows that for r(~) E Ht ,  

l-1 
1 ~m ai>1/2 for t = 0 , 1 , . . . , m k - 1 ,  j > k .  (22) _ 

That is, if a long interval (of length mj)  is shifted only a little (by less than ink), 

then the proportion of l 's does not change by much. Setting al = X 1 in (21), n l + i  

we note that a E Hk corresponds to w E G c 
k , n  t �9 

t Let ~t = {a~}, with a i = at+i, i E 7,. Then r(~ t) is the sequence ~ shifted 

units to the left and truncated at 0. It follows from (22) that for r(~) E Hk, and 

t - -  O , . . . , m k  - 1, 

W(r(6t)) = 1 - e if N E {mk+l,mk+2,. . .}.  

From the definitions of f and .f~ in (5) and (8), one therefore sees that 

(23) fk(r(at)) < f(r(at)) for r (a)  E H~, t = 0 , . . . , i nk  - 1. 
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Introduce the processes X ",a obtained by conditionin~ X' on X~+i = ai for 

i < 0. Also, recall the process Z k,~ introduced after (8). Clearly, 

(24) z~ ,~ x "'.~ �9 = .~+i for i<O. 

Owing to the monotonicity of f and (23), it is therefore not difficult to couple 

X '*~'a and Z k'~, for ~ E Hk, so that 

(2s) z, ~," "',~ _<X,~+~ for i = 0 , . .  , i n k - 1 .  

Together, (14) and (25) imply that for all k and all a E Hk, 

(26) P [ ~ x  In,,-,  + ink) < (1 + , , ) /2 ]  < 3-~-' ,~.  

Denote the above events by Y~, . .  It follows that 

P[F~,., n O~,.,] = ~ V [ ~ . , ]  P[X.',+, = a,, i < O] 
aEH~ 

< 3-k-'.k, 

which implies (20). Consequently 07), and hence (6), hold. 
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